
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​
v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​​i​c​e​​n​s​e​s​​/​b​​y​-​n​c​-​n​d​/​4​.​0​/.

Zhu et al. Journal of Ovarian Research           (2025) 18:70 
https://doi.org/10.1186/s13048-025-01654-x

Journal of Ovarian Research

†Suqin Zhu and Zhiqing Huang contributed equally to this work.

*Correspondence:
Beihong Zheng
zhengbeihong2010@163.com
Yan Sun
sunyanteam@163.com

Full list of author information is available at the end of the article

Abstract
Objective  To investigate the determinants affecting live birth outcomes in fresh embryo transfer among polycystic 
ovary syndrome (PCOS) patients using various machine learning (ML) algorithms and to construct predictive models, 
offering novel insights for enhancing live birth rates in this specific group.

Methods  A sum of 1,062 fresh embryo transfer cycles involving PCOS patients were analyzed, with 466 resulting in 
live births. The dataset was split randomly into training and testing subsets at a 7:3 ratio. Least absolute shrinkage and 
selection operator and recursive feature elimination methods were utilized for feature selection within the training 
data. A grid search strategy identified the optimal parameters for seven ML models: decision tree (DT), K-nearest 
neighbors (KNN), light gradient boosting machine (LightGBM), naive Bayes model(NBM), random forest (RF), support 
vector machine (SVM) and extreme gradient boosting (XGBoost). The evaluation of model effectiveness incorporated 
diverse metrics, encompassing area under the curve (AUC), accuracy, positive predictive value, negative predictive 
value, F1 score, and Brier score. Calibration curves and decision curve analysis were employed to ascertain the optimal 
model. Furthermore, Shapley additive explanations were applied to elucidate the importance of predictor variables in 
the top-performing model.

Results  The AUC values of DT, KNN, LightGBM, NBM, RF, SVM and XGBoost models in the training set were 0.813, 
1.000, 0.724, 0.791, 1.000, 0.819 and 0.853, respectively. Corresponding values in the testing set were 0.773, 0.719, 
0.705, 0.764, 0.794, 0.806 and 0.822. XGBoost emerged as the most effective ML model. SHAP analysis revealed 
that variables encompassing embryo transfer count, embryo type, maternal age, infertility duration, body mass 
index, serum testosterone (T) levels, and progesterone (P) levels on the day of human chorionic gonadotropin 
administration were pivotal predictors of live birth outcomes in individuals with PCOS receiving fresh embryo transfer.
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Polycystic ovary syndrome (PCOS) is widely recognized 
as a prevalent reproductive, endocrine, and metabolic 
disorder impacting women of childbearing age. Beyond 
pathophysiological irregularities—such as ovulatory 
dysfunction, infertility, hyperandrogenism (HA), exces-
sive body weight, hyperinsulinemia, and metabolic syn-
drome—psychological challenges, including anxiety and 
depression, also influence reproductive well-being. These 
individuals not only encounter difficulties in achieving 
conception but are also exposed to heightened risks of 
miscarriage and preterm delivery during pregnancy. Addi-
tionally, pregnancy-related complications and comor-
bidities, such as gestational diabetes mellitus (GDM) and 
hypertensive disorders of pregnancy, exhibit a marked 
increase [1, 2], with potential long-term implications for 
the metabolic health and development of offspring [1, 3].

In vitro fertilization-embryo transfer (IVF-ET) technol-
ogy, along with its derivative method, intracytoplasmic 
sperm injection (ICSI), has been extensively applied in 
the treatment of infertility, with the proportion of PCOS 
patients steadily rising over the years [4]. The advance-
ment of machine learning (ML) algorithms has facilitated 
the development of numerous ML-based models within 
the domain of assisted reproduction [5]. These algo-
rithms offer remarkable adaptability in handling intricate 
nonlinear relationships among variables and identifying 
complex data patterns and interactions, which allows for 
more precise predictions and enhanced model perfor-
mance [6]. Moreover, in comparison with logistic regres-
sion, ML approaches exhibit superior robustness against 
outliers, reduced sensitivity to extreme values, and more 
effective data-processing capabilities, whereas the sus-
ceptibility of logistic regression to outliers may result in 
skewed outcomes [7].

With the advancement of ML applications in the medi-
cal field, considerable strides have been achieved in the 
early diagnosis and management of PCOS [8, 9]. Artifi-
cial intelligence-driven techniques are capable of recog-
nizing patterns within medical data, such as hormonal 
profiles, facilitating the differentiation between PCOS 
and non-PCOS individuals. This enhanced precision 
allows for earlier and more accurate diagnoses, ulti-
mately contributing to improved pregnancy outcomes 
for patients with PCOS [10]. Although previous studies 

have investigated factors influencing live births follow-
ing IVF treatment among PCOS patients [11–12], these 
studies are based on the frozen-thawed embryo transfer 
cycles, with a deficiency in the analysis of the influencing 
factors of the outcomes of fresh embryo transfer cycles 
in PCOS. In recent years, through effective improve the 
body metabolism and endocrine abnormalities, and 
accept low dose gonadotropin (GN) stimulate ovulation 
treatment, more and more patients with PCOS were 
offered the opportunity to fresh embryo transfer. For 
this group of people, our study is useful for the targeted 
interventions and the development of personalized treat-
ment. Moreover, research focusing on the use of ML for 
predicting live births within this context remains scarce. 
The purpose of this investigation is to explore influen-
tial factors contributing to live births after fresh embryo 
transfer in individuals with PCOS, determine reliable 
predictive indicators, and construct prediction models 
for live birth outcomes after fresh embryo transfer. Seven 
ML models were developed and assessed using demo-
graphic, biochemical, and embryological data, and their 
predictive performance characteristics were compared. 
Furthermore, Shapley additive explanations (SHAP) 
were utilized to analyze and interpret each predictor’s 
contribution, addressing the challenges associated with 
the interpretability of ML models and providing clinical 
guidance for early intervention in this population.

Methodologies and materials
General information
This retrospective cohort study investigated assisted 
reproductive populations, focusing specifically on female 
PCOS patients who underwent the antagonist protocol 
followed by fresh embryo transfer at the Fujian Provin-
cial Maternal and Child Health Hospital between January 
2019 and December 2023.

Inclusion criteria: ① PCOS patients meeting the Rot-
terdam diagnostic criteria [13] or Chinese guidelines for 
PCOS diagnosis and treatment [14]; ② ovarian stimula-
tion with antagonist protocol; ③ fresh embryo transfer 
cycles.

Exclusion criteria: ① uterine abnormalities includ-
ing uterine malformation, adenomyosis, and submu-
cosal fibroids; ② endometriosis; ③ hydrosalpinx; ④ 

Conclusion  This study developed a live birth prediction model tailored for PCOS fresh embryo transfer cycles, 
leveraging ML algorithms to compare the efficacy of multiple models. The XGBoost model demonstrated superior 
predictive capacity, enabling prompt and precise identification of critical risk factors influencing live birth outcomes 
in PCOS patients. These findings offer actionable insights for clinical intervention, guiding strategies to improve 
pregnancy outcomes in this population.

Clinical trial number  Not applicable.
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chromosomal abnormalities in either partner; ⑤ severe 
oligoasthenozoospermia in male partners; ⑥ loss to fol-
low-up or missing outcome data. This investigation per 
the principles of the Declaration of Helsinki.

Ovarian stimulation and in vitro fertilization (IVF)
All patients underwent ultrasound assessments and hor-
mone assays on the second or third day of their menstrual 
cycle. Ovarian stimulation was initiated with Gn [Gonal-
F, recombinant FSH (rFSH), Merck Serono; recombinant 
follitropin beta injection (rFSH), MSD (China); or uro-
follitropin for injection, Livzon Pharmaceutical Group] 
at an initial dosage ranging from 112.5 to 225 U. GnRH 
antagonists (Ganirelix, 0.25  mg, Organon; or Cetrotide, 
0.25 mg, Merck Serono) were administered once follicles 
exceeded 12  mm in diameter and/or serum estradiol 
concentrations reached at least 1,000 pmol/L. Dosage 
adjustments were made based on each patient’s response. 
When two follicles measured 18  mm or more, or three 
follicles reached at least 17 mm in diameter, final oocyte 
maturation was triggered with either 250 µg recombinant 
human chorionic gonadotropin (Ovidrel, Merck Serono, 
Switzerland) or a dual trigger involving 0.2 mg triptore-
lin acetate (Decapeptyl, Ferring, Germany) administered 
subcutaneously, combined with 2,000 IU human chori-
onic gonadotropin (HCG, Livzon, China) administered 
intramuscularly.

Oocyte retrieval was conducted under the guidance 
of transvaginal ultrasound 36–38  h following the trig-
ger. Transfer of either a fresh cleavage-stage embryo or a 
blastocyst was performed on the third or fifth-day post-
retrieval. Standard luteal phase support was initiated 
after oocyte retrieval, comprising oral dydrogesterone 
tablets (Duphaston, Abbott, Netherlands), administered 
every eight hours, along with an progesterone vaginal 
sustained-release gel (Crinone, Merck Serono, Switzer-
land) at a dosage of 90 mg per day via vaginal administra-
tion. A positive hCG result was defined by serum hCG 
levels exceeding 5 U/L on the 14th day after cleavage-
stage embryo transfer or the 12th day following blasto-
cyst transfer. Clinical pregnancy was confirmed by the 
presence of at least one gestational sac, with or without a 
fetal pole, located within or outside the uterus, as verified 
through transvaginal ultrasound.

Data collection and preprocessing
For eligible patients, basic clinical data were collected, 
including: ① demographic information (such as age, body 
mass index (BMI), duration of infertility, and number of 
treatment cycles); ② laboratory test results (e.g., basal 
follicle-stimulating hormone (FSH), luteinizing hormone, 
and estradiol (E2) levels); ③ treatment procedures (e.g., 
GN dosage, number of transferred embryos, and types 
of transferred embryos). Data cleaning was conducted in 

accordance with patterns of missing values. Initially, rows 
containing more than 20% missing data across all sam-
ples were excluded. Subsequently, columns with over 20% 
missing values across all rows were also eliminated. Any 
remaining missing values were imputed using the miss-
Forest function in R.

Data feature definition
A live birth was characterized as a pregnancy reaching 28 
weeks or more, resulting in the presence of at least one of 
the four vital signs following delivery: heartbeat, respira-
tion, umbilical cord pulsation, or muscle tone.

Statistical analysis
Python 3.9, R 4.3.2, and SPSS 26.0 were utilized to per-
form data analysis. Continuous variables were evaluated 
utilizing either the t-test or the Mann-Whitney U test, 
while categorical variables were analyzed with the chi-
square test. Continuous data were expressed as median 
values, whereas categorical data were described as fre-
quencies or percentages. The significance level (α) was 
established at 0.05. The dataset was split arbitrarily into 
training and testing subsets at a ratio of 7:3. Least abso-
lute shrinkage and selection operator (LASSO) regres-
sion, in combination with recursive feature elimination 
(RFE), was utilized to identify predictive factors, thereby 
enhancing both predictive performance and model inter-
pretability. Optimal parameters for multiple ML models 
were ascertained utilizing five-fold cross-validation and 
grid search. Decision tree, K-nearest neighbors, light 
gradient boosting machine, naive Bayes model, ran-
dom forest, support vector machine, and extreme gradi-
ent boosting (XGBoost) models were developed using 
five-fold cross-validation. The discriminative ability of 
these models in predicting live birth events was evalu-
ated through metrics encompassing area under the curve 
(AUC), accuracy, precision, positive predictive value 
(PPV), negative predictive value (NPV), F1 score, and 
Brier score. Calibration curves were employed to assess 
the alignment between forecasted probabilities and 
actual outcomes in the optimal model. SHAP was applied 
to explain the optimal model. The statistical analysis and 
model development workflow are illustrated in Fig. 1.

Results
Patient characteristics
A sum of 1,062 cycles was analyzed in this investiga-
tion, with 466 resulting in live births. The modeling 
group comprised 743 cycles, while the validation group 
included 319 cycles. Furthermore, no statistically signifi-
cant differences were detected in the baseline data and 
clinical characteristics between these two groups (all 
P > 0.05), affirming their comparability (Table 1). Table 2 
depicts a comparison of patient characteristics between 
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the live birth group and the control group. Significant dif-
ferences (P < 0.05) were identified for maternal age, BMI, 
infertility duration, treatment frequency, serum testos-
terone (T) levels, initial GN dosage, FSH levels on the 
day of HCG administration, progesterone (P) levels on 
the HCG day, the number of high-quality cleavage-stage 

embryos, the type of transferred embryos, and the num-
ber of transferred embryos between the groups.

Selection of predictive factors
LASSO regression, in combination with RFE, was 
employed to identify predictive factors. Figure  2ABand 

Fig. 1  Flow chart of the study
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2  C illustrate the variable selection process based on 
LASSO regression, yielding a feature set of 9 through 
ten-fold cross-validation, with Lambda 1se serving as 
the selection criterion. The impact of increasing fea-
ture numbers on model accuracy, determined using the 
RFE approach, is depicted in Fig.  2D and E. The model 

attained its highest accuracy when the feature count 
reached 10. The final feature set is presented in Fig.  2F, 
where the left circle displays features identified by 
LASSO regression and the right circle highlights features 
selected through RFE. The intersection of these two sets 

Table 1  Basis characteristics of training group and validation group
Characteristics ALL(n = 1062) Training group (n = 743) Validation group (n = 319) P
Female age (year) 31 (28, 33) 31 (28, 33) 31 (28, 33) 0.828
Male age (year) 32 (30, 35) 32 (30, 35) 32 (30, 35) 0.889
BMI(kg/m2), n(% ) 0.316
  <28 889 (83.71) 628 (84.52) 261(81.82)
  ≥ 28 173 (16.29) 115 (15.48) 58(18.18)
Infertility duration (year), n(% ) 0.295
  <3 477 (44.92) 342 (46.03) 135 (42.32)
  ≥ 3 585 (55.08) 401 (53.97) 184 (57.68)
Number of treatments 1 (1, 3) 1 (1, 3) 1 (1, 3) 0.195
Basal FSH (IU/L) 5.72 (4.88, 6.62) 5.74 (4.90, 6.62) 5.69 (4.88, 6.65) 0.529
Basal LH (IU/L) 6.55 (5.55, 7.95) 6.45 (5.55, 7.85) 6.65 (5.61, 8.25) 0.149
Basal PRL (ng/mL) 14.90 (10.70, 21.10) 14.50 (10.60, 20.80) 15.50 (11.30, 21.95) 0.082
Basal E2 (pg/mL) 29.00 (23.00, 39.00) 29.00 (23.00, 39.00) 29.00 (22.00, 39.00) 0.587
T (ng/mL) 0.40 (0.34, 0.49) 0.41 (0.34, 0.50) 0.40 (0.34, 0.49) 0.346
AFC 18 (15, 21) 18 (15, 21) 18 (15, 21) 0.432
AMH (µg/L) 6.74 (5.64, 8.46) 6.71 (5.61, 8.42) 6.82 (5.69, 8.68) 0.359
Fertilization, n(% ) 0.737
  IVF 788 (74.20) 554 (74.56) 234 (73.35)
  ICSI 274 (25.80) 189 (25.44) 85 (26.65)
Initial dose of Gn 125 (112.50, 150) 125 (112.50, 150) 125 (112.50, 150) 0.680
Total dose of Gn 2250 (1800.00, 2787.50) 2237.50 (1800.00, 2762.50) 2250.00 (1775.00, 2906.25) 0.577
Dosing days of Gn 12 (11, 14) 12 (11, 14) 12 (11, 14) 0.819
FSH on HCG day (IU/L) 10.56 (8.57, 13.03) 10.62 (8.64, 13.06) 10.46 (8.51, 12.95) 0.946
LH on HCG day (IU/L) 1.00 (0.70, 1.50) 1.00 (0.80, 1.50) 1.04 (0.70, 1.50) 0.551
E2 on HCG day (pg/mL) 3223.00(2263.25, 4259.00) 3267.00 (2314.50, 4326.00) 3143.00 (2200.00, 4203.50) 0.392
P on HCG day (ng/mL) 0.66 (0.46, 0.98) 0.65 (0.47, 0.91) 0.67 (0.44, 1.02) 0.881
Endometrial thickness on
HCG day(mm)

11.85 (10.50, 13.00) 11.80 (10.50, 13.00) 12.00 (10.45, 13.00) 0.820

Trigger strategy, n(% ) 0.353
rHCG 409 (38.51) 282 (37.95) 127 (39.81)
GnRH-a combined with HCG 653(61.49) 461 (62.05) 192 (60.19)
Number of oocytes retrieved 13.00 (10.00, 17.00) 13.00 (10.00, 17.00) 14.00 (11.00, 18.00) 0.153
Number of mature oocytes 8.00 (5.00, 11.00) 8.00 (5.00, 11.00) 7.00 (5.00, 12.00) 0.787
Number of fertilized eggs 10.00 (7.00, 13.00) 10.00 (7.00, 13.00) 10.00 (8.00, 14.00) 0.077
Number of high-quality Cleavage embryos 5.00 (3.00, 8.00) 5.00 (3.00, 8.00) 6.00 (3.00, 9.00) 0.104
Stage of embryos transferred, n(%) 0.540
  Cleavage 927 (87.29) 645 (86.81) 282 (88.40)
  Blastocyst 135 (12.71) 98 (13.19) 37 (11.60)
Number of embryos transferred, n(% ) 0.613
  1 356 (33.52) 245 (32.97) 111 (34.80)
  2 706 (66.48) 498 (67.03) 208 (65.20)
Live Birth, n(%) 0.639
  yes 466 (43.88) 330 (44.41) 136 (42.63)
  no 596 (56.12) 413 (55.59) 183 (57.37)
Note: Continuous variables are presented as medians (P25, P75), and categorical data were reported as numbers (%). *P < 0.05 was considered statistically significant. 
BMI: body mass index, FSH: follicle stimulating hormone, LH: luteinizing hormone, E2: Estradiol, T: testosterone, AMH: anti Müllerian hormone, AFC: antral follicle 
count, Gn: gonadotropin, hCG: human chorionic gonadotropin, P: progesterone, GnRH-a: gonadotropin-releasing hormone agonist
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comprises 7 features, representing the final feature set 
considered for inclusion in the model.

Development and validation of prediction models
The selected predictive factors were integrated into 
seven distinct ML models. To optimize the predictive 
capabilities of each model, hyperparameters underwent 
further refinement, and 5-fold cross-validation was uti-
lized for performance assessment. The outcomes of these 

models on the validation set are presented in Table 3. As 
depicted in Fig. 3, the XGBoost model achieved superior 
performance compared to the other six models, attaining 
an AUC of 0.822 (95% confidence interval [CI] = 0.777–
0.867), an accuracy rate of 0.752, specificity of 0.732, 
sensitivity of 0.772, PPV of 0.682, NPV of 0.812, an F1 
score of 0.724, and a Brier score of 0.172 in the validation 
set. Furthermore, calibration curves were employed to 
ascertain the predictive effectiveness of the models. The 

Table 2  Basis characteristics of live birth group and control group
Characteristics ALL(n = 743) Live birth group (n = 330) Control group (n = 413) P
Female age (year) 31 (28, 33) 30 (28, 32) 32 (29, 34) < 0.001
Male age (year) 32 (30, 35) 32 (30, 34) 33 (30, 36) < 0.001
BMI(kg/m2), n(% ) < 0.001
  <28 628 (84.52) 300 (90.9) 328 (79.42)
  ≥ 28 115 (15.48) 30 (9.1) 85 (20.58)
Infertility duration (year), n(% ) <0.001
  <3 342 (46.03) 180 (54.55) 162 (39.23)
  ≥ 3 401 (53.97) 150 (45.45) 251 (60.77)
Number of treatments 1 (1, 3) 1 (1, 3) 1 (1, 3) 0.08
Basal FSH (IU/L) 5.74 (4.9, 6.62) 5.68 (4.85, 6.5) 5.84 (4.94, 6.65) 0.155
Basal LH (IU/L) 6.45 (5.55, 7.85) 6.55 (5.65, 7.75) 6.45 (5.55, 7.95) 0.825
Basal PRL (ng/mL) 14.5 (10.6, 20.8) 15.65 (10.9, 21) 13.6 (10.4, 20.4) 0.074
Basal E2 (pg/mL) 29 (23, 39) 29 (22.25, 38) 29 (23, 40) 0.506
T (ng/mL) 0.40 (0.34, 0.49) 0.40 (0.33, 0.47) 0.41 (0.34, 0.52) 0.002
AFC 18 (15, 21) 18 (15, 21) 18 (16, 20) 0.98
AMH (µg/L) 6.71 (5.61, 8.42) 6.73 (5.58, 8.43) 6.7 (5.64, 8.4) 0.806
Fertilization, n(% ) 0.807
  IVF 554 (74.56) 248 (75.15) 306 (74.09)
  ICSI 189 (25.44) 82 (24.85) 107 (25.91)
Initial dose of Gn 125 (112.5, 150) 125 (112.5, 150) 137.5 (112.5, 150) < 0.001
Total dose of Gn 2237.5 (1800, 2762.5) 2175 (1825, 2675) 2300 (1775, 2800) 0.535
Dosing days of Gn 12 (11, 14) 12 (11, 14) 12 (11, 13) 0.056
FSH on HCG day (IU/L) 10.62 (8.64, 13.06) 10.3 (8.36, 12.48) 10.84 (8.82, 13.44) 0.018
LH on HCG day (IU/L) 1 (0.8, 1.5) 1 (0.8, 1.5) 1 (0.79, 1.52) 0.787
E2 on HCG day (pg/mL) 3267 (2314.5, 4326) 3213 (2372.25, 4287.25) 3317 (2232, 4332) 0.774
P on HCG day (ng/mL) 0.65 (0.47, 0.91) 0.6 (0.41, 0.85) 0.69 (0.5, 1) 0.003
Endometrial thickness on
HCG day(mm)

11.8 (10.5, 13) 12 (10.53, 13) 11.6 (10.3, 13) 0.483

Trigger strategy, n(% ) 0.476
  rHCG 282 (37.95) 129 (39.09) 153 (37.05)
  GnRH-a combined with HCG 461 (62.05) 201 (60.91) 260 (62.95)
Number of oocytes retrieved 13 (10, 17) 13 (10, 16.75) 14 (10, 18) 0.228
Number of mature oocytes 8 (5, 11) 8 (5, 12) 8 (4, 11) 0.064
Number of fertilized eggs 10 (7, 13) 10 (7, 13) 10 (7, 13) 0.417
Number of high-quality Cleavage embryos 5 (3, 8) 5 (4, 8) 5 (3, 8) 0.014
Stage of embryos transferred, n(%) < 0.001
  Cleavage 645 (86.81) 245 (74.24) 400 (96.85)
  Blastocyst 98 (13.19) 85 (25.76) 13 (3.15)
Number of embryos transferred, n(% ) < 0.001
  1 245 (32.97) 86 (26.06) 159 (38.5)
  2 498 (67.03) 244 (73.94) 254 (61.5)
Note: Continuous variables are presented as medians (P25, P75), and categorical data were reported as numbers (%). *P < 0.05 was considered statistically significant. 
BMI, body mass index; FSH, follicle stimulating hormone; LH, luteinizing hormone; E2, Estradiol; T, testosterone; AMH, anti Müllerian hormone; AFC, antral follicle 
count; Gn, gonadotropin; hCG, human chorionic gonadotropin; P, progesterone; GnRH-a, gonadotropin-releasing hormone agonist
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calibration curve for the validation set in Fig. 4A reflects 
a high level of alignment between the forecasted live 
birth rates and the actual outcomes when the XGBoost 
model is used. Figure 4B displays the decision curve, sug-
gesting that the XGBoost model provides enhanced net 
benefits when the anticipated live birth rates span from 
10 to 90%.

Model interpretability using SHAP
The XGBoost model exhibited excellent predictive capa-
bility, leading to the adoption of the SHAP framework 
for further model interpretation. Figure  5A displays the 
seven most influential factors, ranked by their mean 
absolute SHAP values, which include, in descending 

order: number of transferred embryos, blastocyst trans-
fer, female age, duration of infertility ≥ 3, BMI ≥ 28, tes-
tosterone (T) level and P level on HCG day. Figure  5B 
visualizes the effects of these factors on live birth out-
comes, with the y-axis representing the factor values and 
the x-axis reflecting their influence on the likelihood of 
live birth. A higher female age, elevated serum T levels, 
increased P levels on HCG day, duration of infertility ≥ 3 
and BMI ≥ 28 were linked with a lower probability of live 
birth after fresh embryo transfer in PCOS patients. Two 
representative cases are presented to illustrate personal-
ized feature attributions and demonstrate the applica-
tion of SHAP in explaining individual model predictions. 
Specifically, Fig. 5C depicts a PCOS patient who achieved 

Table 3  Performance of seven machine learning-based models for predicting live birth in the testing set
Model AUC Accuracy Precision Sensitivity Specificity PPV NPV F1 score Brier score
DT 0.773 0.679 0.669 0.619 0.738 0.669 0.694 0.643 0.194
KNN 0.719 0.643 0.594 0.581 0.705 0.594 0.694 0.587 0.258
LGBM 0.705 0.642 0.605 0.551 0.732 0.605 0.687 0.551 0.215
NBM 0.764 0.720 0.671 0.691 0.749 0.671 0.765 0.577 0.207
RF 0.794 0.702 0.669 0.64 0.765 0.669 0.741 0.654 0.184
SVM 0.806 0.266 0.202 0.243 0.29 0.202 0.34 0.221 0.461
XGB 0.822 0.752 0.682 0.772 0.732 0.682 0.812 0.724 0.172
Note: DT, decision tree; KNN, k-nearest neighbors; LGBM, light gradient boosting machine; NBM, naïve bayes model; RF, random forest; SVM, Support Vector 
Machine; XGB, eXtreme gradient boosting; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value

Fig. 2  Features selected by LASSO and RFE. (A) The Lasso regression coefficient profiles of all baseline characteristics. (B) The optimal lambda selection in 
the Lasso regression with 10-fold cross-validation. Misclassification errors of different variables against log(lambda) are revealed. The two vertical dashed 
lines represent the optimal value under the minimum criterion and 1-SE criterion, respectively. The “lambda”is the tuning parameter. (C) A total of 9 
predictors with non-zero coefficients are identified. (D) Features selected by RFE, When the number of features is 10, the RMSE is the lowest. (E) The top 
ten significant predictors identified by RFE. (F) The Venn diagram of features selected by LASSO and RFE. The intersection results of two methods yield 7 
predictors. LASSO, Least Absolute Shrinkage and Selection Operator; RFE, Recursive Feature Elimination; RMSE, Root Mean Square Error
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live birth, while Fig.  5D illustrates a PCOS patient who 
did not achieve live birth. The explanation process begins 
with the base value, which represents the average predic-
tion across all instances. Subsequently, each input fea-
ture at varying levels can either increase or decrease the 
predicted probability of the outcome. The length of the 
arrows in the force plots reflects the magnitude of the 
SHAP values for these features. Ultimately, the model’s 
predicted output for a specific patient is derived.

Discussion
In recent years, the correction of metabolic and endo-
crine abnormalities, combined with low-dose GN ovar-
ian stimulation in IVF, has enabled a growing number of 
PCOS patients to undergo fresh embryo transfer, thereby 
reducing the time required to achieve live birth. Utilizing 

ML methods, this study was among the first to explore 
the determinants affecting live birth outcomes in PCOS 
patients after fresh embryo transfer. Seven ML prediction 
models were developed, each exhibiting strong predic-
tive ability in differentiating live birth outcomes within 
this group, with the XGBoost model delivering the most 
favorable performance. This model supports clinicians in 
initiating early diagnostic interventions for these patients 
and offers valuable insights for enhancing pregnancy out-
comes in PCOS cases in the future.

ML techniques exhibit enhanced performance over 
traditional statistical methods when managing com-
plex relationships among numerous features [15–16], as 
they can identify influencing factors that might be over-
looked by conventional approaches based on experience 
[17]. For predictor selection, LASSO regression and RFE 

Fig. 4  Discriminative power and accuracy of XGBoost model. A. The calibration curves of the validation group in XGBoost model. B The clinical decision 
curves of the validation group in XGBoost model

 

Fig. 3  Comparison of receiver operator characteristic curves (ROCs) for the machine learning models. (A) The ROCs of training models. (B) The ROCs 
of validation models. AUC, area under the ROC; DT, decision tree; KNN, k-nearest neighbors; LGBM: light gradient boosting machine; NBM, naïve bayes 
model; RF, random forest; XGBoost, eXtreme gradient boosting
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were employed, and their intersection was used to con-
struct predictive models. Among the seven ML mod-
els developed, the XGBoost model demonstrated the 
highest performance, achieving an AUC of 0.822 (95% 
CI = 0.777–0.867). To further interpret the model and 
assess the contributions of individual predictors, SHAP 
analysis was applied to the top-performing XGBoost 
model. Each SHAP value quantifies the positive or nega-
tive impact of a feature on live birth outcomes after fresh 
embryo transfer in PCOS patients. Among the predic-
tors, blastocyst transfer provided the most substantial 
contribution to model predictions, showing higher live 
birth rates in contrast to cleavage-stage embryo transfer 
[18]. Nevertheless, considering the heightened possibility 
of ovarian hyperstimulation syndrome in fresh embryo 
transfers for PCOS patients, some researchers have pro-
posed adopting a freeze-all strategy [19–20]. A random-
ized controlled trial involving 1,650 patients compared 
fresh blastocyst transfer cycles with freeze-all and thawed 
blastocyst transfer groups, focusing on primary out-
comes such as singleton live birth rates and secondary 
outcomes including pregnancy complications, neonatal 
birth weight, birth defects, and perinatal complications. 
The findings revealed that the freeze-all strategy signifi-
cantly enhanced blastocyst implantation rates, live birth 
rates, and singleton newborn birth weights, contributing 
to improved maternal-fetal safety and clinical outcomes. 

However, the study also noted that frozen-thawed single 
blastocyst transfers were linked to an elevated risk of 
maternal preeclampsia, raising critical considerations for 
clinical application [21]. In a recent retrospective cohort 
study of 10,964 single blastocyst transfer cycles, it was 
observed that transferring single low-grade blastocysts 
yielded approximately 30% lower live birth rates rela-
tive to 44% for high-quality single blastocysts (with very 
low-grade blastocysts achieving 14%) without negatively 
affecting perinatal outcomes [22]. SHAP analysis further 
demonstrated that transferring two embryos increased 
the probability of live birth. Although twin embryo trans-
fer yields higher pregnancy rates compared to single 
embryo transfer [23], existing research and consensus 
emphasize that it also elevates the risk of multiple preg-
nancies, along with associated pregnancy complications 
and adverse perinatal outcomes [24–25]. Consequently, 
single blastocyst transfer is recommended for PCOS 
patients, as it balances embryo implantation and live 
birth success with a reduced risk of multiple pregnancies.

As women age, fertility gradually declines. Once 
women surpass 35 years of age, the likelihood of spon-
taneous abortion increases substantially, while pregnancy 
and live birth rates decrease, accompanied by a height-
ened risk of various pregnancy and perinatal complica-
tions [26]. The connection between maternal age and 
clinical outcomes following embryo transfer in assisted 

Fig. 5  SHAP plots. (A) SHAP summary plot shows feature importance for each predictor of the XGBoost model in descending order. The upper predictors 
are more important to the model’s predictive outcome. A dot is created for each feature attribution value for the XGBoost model of each patient. The 
further away a dot is from the baseline SHAP value of zero, the stronger it effects the model output. Dots are colored according to the values of features. 
Yellow represents higher feature values and red represents lower feature values. (B) Bar chart of the mean absolute SHAP value for each predictor of the 
XGBoost model in descending order. C and D. The force plots provide personalized feature attributions using two examples
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reproductive technology (ART) has been well-established 
in numerous studies, with a general consensus highlight-
ing significantly reduced clinical pregnancy and live birth 
rates in women older than 35 years undergoing ART 
[27–28]. Consistent findings were observed in this study. 
Advanced maternal age elevates the risk of early miscar-
riage, primarily due to a decline in oocyte quality associ-
ated with aging, which results in an increased likelihood 
of embryonic aneuploidy [29]. Preimplantation genetic 
screening prior to embryo transfer may help mitigate the 
risk of aneuploidy and reduce the incidence of early mis-
carriage, although the safety and long-term risks of this 
approach remain a topic of debate [30]. This study also 
found that increased progesterone levels on HCG day 
negatively impacted live birth rates in individuals with 
PCOS undergoing fresh embryo transfer. Some research 
suggests that progesterone levels on HCG day may indi-
rectly influence endometrial receptivity and embryo 
attachment through alterations in gene expression dur-
ing the implantation window [31]. However, other stud-
ies report no association between progesterone levels on 
HCG day and clinical pregnancy or miscarriage follow-
ing IVF protocol [32]. As a result, the effect of progester-
one measurements on HCG day regarding clinical results 
post-embryo transfer remains a debated topic.

A high BMI contributes not only to cardiovascular and 
metabolic disorders but also impairs fertility [33]. Mul-
tiple studies have established that a BMI ≥ 28 is correlated 
with reduced ovarian responsiveness and unfavorable 
pregnancy outcomes [34–35]. In this investigation, 
BMI ≥ 28 was ascertained as a prominent risk factor for 
the failure to achieve live birth in individuals with PCOS 
undergoing fresh embryo transfer. The foundational 
treatment for patients with PCOS involves lifestyle inter-
ventions, which encompass a diversified approach includ-
ing appropriate exercise, dietary control, and behavioral 
modification. For obese PCOS patients, weight loss has 
been demonstrated to significantly improve treatment 
outcomes. Specifically, reducing body weight by 5–10% 
can lead to notable improvements in ovulation, men-
strual cycle regulation, and insulin sensitivity. It is impor-
tant to emphasize that weight loss should be gradual 
and sustained over time. HA is recognized as a defining 
feature of PCOS [36]. However, prior investigations into 
the influence of HA on reproductive outcomes in PCOS 
patients have been limited, concentrating mainly on early 
reproductive stages. Research on subsequent maternal 
and neonatal outcomes in individuals who achieved clini-
cal pregnancy remains scarce, and the existing literature 
presents some inconsistencies. In animal experiments, 
Diao et al. [37] found that high-dose androgen exposure 
could disrupt endometrial development and interfere 
with the prostaglandin system, potentially causing early 
pregnancy loss. Similarly, De Vos et al. [38] reported 

significantly lower cumulative live birth rates among 
PCOS patients with HA compared to those without HA. 
Accordingly, lowering serum testosterone levels in PCOS 
patients positively influences live birth rates.

Anti-müllerian hormone (AMH) and antral follicle 
count (AFC) serve as crucial markers for evaluating ovar-
ian reserve function in ART-assisted pregnancy popu-
lations. These markers are often utilized as predictors 
of IVF/ICSI-ET success rates and are regarded as use-
ful metrics for forecasting live birth outcomes. Fertility 
counseling provided by clinicians frequently relies on 
changes in these indicators throughout ovarian stimula-
tion to offer personalized guidance [39]. Nevertheless, 
the findings of this study suggest that AMH and AFC do 
not exhibit marked predictive value for live birth rates 
after embryo transfer in PCOS patients, highlighting the 
necessity for further investigations into the diagnosis 
and management of PCOS patients undergoing assisted 
reproductive treatments.

Certain constraints need to be recognized in this inves-
tigation. First, the data utilized were obtained from a sin-
gle center, which may restrict the model’s applicability to 
patients from other institutions. Second, certain param-
eters, including insulin and glucose metabolism, were 
absent from the available electronic medical records. 
Furthermore, external validation of the constructed pre-
diction model has not been performed, raising concerns 
regarding its generalizability and highlighting the need 
for further verification. Moving forward, comprehensive 
external validation datasets will be gathered to enhance 
the model’s robustness.

Seven ML models were developed in this study to pre-
dict live birth following fresh embryo transfer in patients 
with PCOS, demonstrating strong evaluation accuracy. 
These models provide critical support for identifying 
high-risk cases within this population that do not result 
in live birth, facilitate informed treatment decisions, and 
enable effective monitoring of patient progression.
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